Search results

Search for "edge states" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • structure, magnetism, and charge and spin transport, are very interesting for nanoscale physics. In particular, nanostructures with zigzag edges are expected to have spin-polarized electronic edge states. The synthesized structures could play a leading role in graphene-based spintronics. In addition to
PDF
Album
Review
Published 03 Apr 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • core, whereas, green fluorescence may correspond to n–π* transitions of the edge states [48][49]. The “top-down” approach involves breaking down bulky carbonaceous materials, such as carbon fibers, carbohydrates, proteins, and carbon soot, through chemical or physical methods. The carbon containing
  • levels can be introduced into CDs by different surface functional groups. Wang et al. demonstrated that by adjusting the functional groups on the surface of CDs, the emission wavelength could be dramatically altered. In some unique edge states, which were made up of many carbon atoms and functional
PDF
Album
Review
Published 05 Oct 2022

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • formation of extended metallic edge states in the defective lattice was proposed for the pseudometallic regime [26]. Line irradiation with helium ions bisecting a monolayer MoS2 flake has been shown to create a defective channel that can be used to fabricate a 2D memristive device [27]. And in a subsequent
PDF
Album
Review
Published 02 Jul 2021

Solid-state Stern–Gerlach spin splitter for magnetic field sensing, spintronics, and quantum computing

  • Kristofer Björnson and
  • Annica M. Black-Schaffer

Beilstein J. Nanotechnol. 2018, 9, 1558–1563, doi:10.3762/bjnano.9.147

Graphical Abstract
  • through the magnetic flux [2]. A topological insulator is a material with insulating bulk, but with topologically protected helical edge states. Here we show that it is possible to construct a solid state SG apparatus, or spin splitter, using the edge states in a two-dimensional topological insulator (2D
  • (1)-AB to SU(2)-AB. Results Setup Consider the conceptual setup in Figure 1. The circular channel around the hole forms an edge of the 2D TI and therefore hosts helical edge states. We assume for simplicity that the spin-polarization axis is perpendicular to the plane of the TI. The Hamiltonian
  • therefore begin by calculating this transfer matrix. When considering processes that transfers electrons from the left to the right, we can, because of the helicity of the edge states, restrict ourselves to up-spins along the upper edge, and down-spins along the lower edge. Further, we introduce the
PDF
Album
Full Research Paper
Published 25 May 2018

Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors

  • Tudor D. Stanescu,
  • Anna Sitek and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1512–1526, doi:10.3762/bjnano.9.142

Graphical Abstract
  • 1–20 nm. For all these geometries, the edge states corresponding to corner localization represent better approximations of the ideal 1D limit than the states hosted by a full wire. Remarkably, the energy separation between the corner states and the side states increases when the shell thickness is
PDF
Album
Full Research Paper
Published 22 May 2018

Robust midgap states in band-inverted junctions under electric and magnetic fields

  • Álvaro Díaz-Fernández,
  • Natalia del Valle and
  • Francisco Domínguez-Adame

Beilstein J. Nanotechnol. 2018, 9, 1405–1413, doi:10.3762/bjnano.9.133

Graphical Abstract
  • relativistic corrections (Darwin and mass–velocity interactions) large enough so as to invert the Γ6 and Γ8 bands [4]. The HgTe/CdTe quantum well possesses non-trivial edge states when a certain width is exceeded. In 2007, experiments verified this remarkable result and established the existence of the quantum
PDF
Album
Full Research Paper
Published 14 May 2018

Circular dichroism of chiral Majorana states

  • Javier Osca and
  • Llorenç Serra

Beilstein J. Nanotechnol. 2018, 9, 1194–1199, doi:10.3762/bjnano.9.110

Graphical Abstract
  • geometry Jz is not a good quantum number and, therefore, there are states with mixed angular momentum. We have performed calculations in a circular geometry confirming this interpretation. Therefore, quasiparticle scattering by the corners plays a nontrivial role on the absorption by chiral edge states
PDF
Album
Full Research Paper
Published 16 Apr 2018

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • preserves the electronic states localized at the edges near the Fermi level similar to the graphene nanoribbon with zigzag edges [29][30][31][32][33]. Although the electronic structure of SiNR has been studied experimentally [34][35][36], the existence of edge states remains an open question. The
  • arranged along the edge. As a result, the flat band dispersion arising from the edge states disappears and instead a more dispersive band crosses the Femi level. In contrast, the DFT study of Ding and Wang [33] shows that a peak appears at the Fermi level in the DOS spectrum for a reconstructed SiNR in
PDF
Album
Full Research Paper
Published 16 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • properties [2][8]. Moreover, electrical, structural and optical properties of VGNs can be tuned by controlling the vertical sheet density, structural imperfections and the chemical nature of edge states [9][10][11]. Shih et al. [12] have reported the importance of optimized growth for better field-emission
PDF
Album
Full Research Paper
Published 10 Aug 2017

Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

  • Carlos. J. Páez,
  • Dario. A. Bahamon,
  • Ana L. C. Pereira and
  • Peter. A. Schulz

Beilstein J. Nanotechnol. 2016, 7, 1983–1990, doi:10.3762/bjnano.7.189

Graphical Abstract
  • materials; constrictions; edge states; phosphorene nanoribbons; quantum dots; Introduction Low-dimensional systems have attracted attention over the past fifty years since the development of semiconductor epitaxial growth and deposition of metallic thin films [1]. The early scenario, back in the 1960s, as
  • associated to the other cosine-like band. Segmented nanoribbons: resonant tunnelling in 1D effective-chain structures In the energy energy range of the edge-states band, the “bulk” of the nanoribbon acts mainly as “in plane” substrate for the two-dimensional channels at the edges. This condition, evidenced
  • = 57 nanoribbon, as a function of the energy. In order to avoid any coupling between the edge states the width of the nanoribbon in the contacts is also NZ = 60. Transmission plateaus above and below the edge states band are shown, for the sake of completeness, since these structures are of entirely
PDF
Album
Full Research Paper
Published 13 Dec 2016

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1413–1420, doi:10.3762/bjnano.6.146

Graphical Abstract
  • of the ribbon. It is apparent that the up-spin is mostly located toward the edges in contrast with the down-spins, which are delocalized over the EBG. The band structure of the electrode is bent in the vicinity of the k point due to the edge states associated with the oxygen atoms (Figure 3b). Due to
PDF
Album
Full Research Paper
Published 26 Jun 2015

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1176–1182, doi:10.3762/bjnano.6.119

Graphical Abstract
  • other side. For a perfect crystalline zigzag-edge monolayer graphene nanoribbon with hydrogen-terminated edges (gmono, Figure 1a), T(E) = 1 outside the Fermi energy and T(E) = 3 near the Fermi energy. The high T(E) near the Fermi energy is due to the edge states and band bending, as predicted
PDF
Album
Full Research Paper
Published 18 May 2015
Other Beilstein-Institut Open Science Activities